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Abstract 

The experimental discovery of the Higgs boson at the Large Hadron Collider (LHC) has effectively disqualified all 

Higgs-less models developed prior to July 2012. Today, despite its conclusive validation, the Higgs sector of the 

Standard Model (SM) remains a largely uncharted territory. This raises the following question: Are there any hidden 

insights brought up by Higgs-less models that can still be beneficial for the on-going research in particle physics? 

Pursuing this thought, we re-examine here Moffat’s scenario based on a finite electroweak Lagrangian built outside 

the Higgs paradigm. Unlike the original proposal, we place the model on a spacetime support equipped with 

minimal fractality. In doing so, we find that the theory is perturbatively well-behaved at large scattering cross-

sections and that it gracefully connects with the conventional formulation of the SM in the limit of vanishing 

fractality.  

1. Introduction 

It is widely recognized that the properties of the Higgs boson discovered at CERN in 2012 are 

consistent with the predictions of the SM. However, it is currently unknown if the Higgs boson is 

the scalar predicted by the SM or some low-energy manifestation of new physics conjectured to 

come into play beyond SM. There are currently many unsettled questions surrounding the 

phenomenology of the Higgs sector (see e.g. [1]) and the hope is that the restart of the LHC in 

2015 will stimulate further progress on these issues. The present state of affairs suggests that 

there are valuable insights in Higgs-less approaches which may be relevant for model-building 

efforts in particle theory. Following up on this thought, we re-visit here Moffat’s scenario in 
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which a Higgs-less electroweak (EW) model is rendered finite in the ultraviolet sector (UV) by 

generalizing the standard scale dependence of gauge couplings [2]. The idea can be expanded by 

recalling that, in general, the standard running of couplings is equivalent to their evolution in 

continuous spacetime dimensions [3-4]. Drawing on previous works on this topic [3-7, 10-14], 

we place Moffat’s model on a spacetime support equipped with minimal fractality. In doing so, 

we find that the theory is perturbatively well-behaved at large scattering cross-sections and that it 

gracefully connects with the conventional formulation of the SM in the limit of vanishing 

fractality.  

Our paper is organized as follows: next section briefly surveys the main points behind Moffat’s 

theory; the relevance of “continuous dimensions” and “minimal fractal manifold” (MFM) in field 

theory form the topic of section 3. Next section connects Moffat’s theory with the power-law 

scaling of gauge couplings on the MFM. Section 5 explores the idea that the Higgs scalar 

discovered at CERN is actually a Bose-Einstein condensate of gauge bosons on the MFM. 

Concluding remarks are presented in the last section. 

2. Moffat’s electroweak model   

Consider a Higgs-less EW model based on the standard local symmetry group 

(3) (2) (1)c L YSU SU U   [2]. Assuming natural units ( 1c  ) and an underlying metric with 

signature ( 1, 1, 1, 1)diag      , the Lagrangian of this model can be broken up into a couple 

of terms 

 1 2EWL L L   (1) 

The first term includes all covariant differential operators,  
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whereas the second term contains the mass contributions for both vector bosons and fermions, 

namely, 
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To build a viable quantum field theory that is a) perturbatively complete in the UV, b) Poincaré 

invariant and c) avoids unitarity violation of scattering amplitudes at large energies, the ordinary 

gauge couplings of the standard EW Lagrangian need to be upgraded to  
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Here, W  is a reference scale and the interpolating function ( )E t  is an entire function on the 

complex argument 
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 that satisfies the “on-shell” condition in the low-energy regime 
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  t  < 1  (3a) 

and drops down in the UV as in 

 lim ( ) 0
t

E t


  (3b) 
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Consider now the scattering process of longitudinally polarized W bosons 

 
L L L LW W W W       (4) 

The matrix elements of scattering amplitude are given by  

 2

2

cos 1
[ (1)]

8
W

W

i A ig s O
M

 
   (5) 

where   is the scattering angle and s  is the center-of-mass energy. Addition of the SM Higgs 

boson cancels unitarity violation at large s  in (5) due to the Higgs contribution  
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By contrast, unitarity violation in Moffat’s model is suppressed by amplitudes vanishing off at 

large s  as a result of (3b), namely, 
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3. The minimal fractal manifold (MFM) 

Two immediate questions arise regarding Moffat’s model: 

1) What underlying principle motivates the existence of the interpolating functions introduced in 

(2a) and (2b)? 
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2) Is the entire model refuted by the discovery of the Higgs boson?  

The next sections attempt to answer these questions. We first show that the interpolating 

functions of (2a-b) naturally occur if the underlying spacetime is no longer considered a smooth 

continuum but it is allowed to have arbitrarily small deviations from four dimensions ( 4D   , 

  << 1). In what follows, we refer to such spacetime as a “minimal fractal manifold” (MFM). 

We indicate that a particular class of models defined on the MFM restores unitarity of scattering 

amplitudes in UV without invoking the Higgs mechanism. Then we show that this class of 

models does not exclude the existence of a scalar resonance replicating the attributes of the SM 

Higgs but consisting of a condensate of gauge bosons on the MFM.  

As pointed out in [4-6, 10, 14], the onset of fractal geometry in QFT follows from the path 

toward criticality near the EW scale. It is known that the most reliable description of criticality is 

through the tools of the Renormalization Group program (RG), in general and dimensional 

regularization, in particular. Regularization techniques devised in RG are not independent from 

each other. The connection between dimensional and UV cutoff regularizations stems from the 

minimal subtraction scheme ( MS ) and is given by [5-6]     

 

2

2

2 5
log log 4

6

UV
E 

 


     (9) 

Here, E  stands for the Euler constant,   for the observation scale and UV  for the UV cutoff. It 

is more convenient to present (9) is a slightly different form, that is, 
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 (10) 
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If the numerical disparity between   and 
UV  is large enough, one can reasonably approximate 

  as in 

   ~  2( )
UV




 (11) 

It is apparent from (10) or (11) that the four-dimensional space-time continuum is recovered in 

either one of these limits: 

a) 
UV   and 0 <  <<

UV , 

b) UV   and 0    

However, both limits are disfavored by our current understanding of the far UV and the far IR 

boundaries of field theory. Theory and experimental data alike tell us that the notions of infinite 

or zero energy are, strictly speaking, meaningless. This is to say that either infinite energies 

(point-like objects) or zero energy (infinite distance scales) are unphysical idealizations. Indeed, 

there is always a finite cutoff at both ends of either energy or energy density scale (far UV = 

Planck scale, far infrared (IR) = finite radius of the observable Universe or the non-vanishing 

energy density of the vacuum set by cosmological constant). These observations are also 

consistent with the estimated infinitesimal (yet non-vanishing) photon mass, as discussed in [11-

12].  

A key feature of the MFM is that the assumption   << 1, postulated near the EW scale, is the 

only sensible way of asymptotically matching all consistency requirements mandated by 

relativistic QFT and the SM [5-6]. In particular, large departures from four-dimensionality imply 

non-differentiability of spacetime trajectories in the conventional sense. This in turn, spoils the 
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very concept of “speed of light” and it becomes manifestly incompatible with the Poincaré 

symmetry. 

4. Moffat’s theory as manifestation of the MFM 

To make progress from this point on, we appeal to the recently developed methods of fractional 

field theory [5, 8-9]. Specifically, we assume that field theory defined on fractional four-

dimensional spacetime is described by the action  

 4( ) (v( ) )S d x L x d x L
 

 

    (12) 

where the measure ( )d x denotes the ordinary four-dimensional volume element multiplied by a 

weight function v( )x . If the weight function is factorizable in coordinates and positive 

semidefinite, v( )x  takes the form   
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in which    

 0 1   (14) 

are four independent parameters. An isotropic spacetime of dimension 4D    is characterized 

by 

 1
4






   


 (15) 
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which turns (13) into   

 v( )x  ≈ 
4

( )x   (16) 

Dimensional analysis requires all coordinates entering (13) and (16) to be scalar quantities. They 

can be generically specified relative to a characteristic length and time scale, as in 
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in which 
0,   are positive-definite energy scales. Relation (16) becomes 
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such that, in the IR limit 0x   and under the strong assumption that   is at least an order of 

magnitude larger than x , e.g.   >> x , 
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In the UV limit x   and under the strong assumption   >> 
1

x


, (18) behaves in a 

complementary way to (19), namely, 

 
, 0

lim v( )
0, 0x

if
x

if





  
 

 
 (20) 

A remarkable property of the MFM is the emergence of “effective” coupling charges depending 

on the weight function as in [8-9]    
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2 2' ' v( )g g x  (21b) 

in which , 'g g are charges residing on the four-dimensional spacetime ( 4D  ). Combining (2), 

(7)-(8) and (21) leads us to conclude that, at least in principle, MFM is capable of securing 

unitarity of scattering amplitudes in Moffat’s Higgsless model. 

5. Higgs scalar as Bose-Einstein condensate on the MFM 

The intent of this section is to show that Moffat’s model built on the MFM does not exclude the 

existence of a scalar resonance replicating the attributes of the SM Higgs but emerging as 

condensate of gauge bosons on the MFM. To some extent, the condensation process bears 

similarities with Anderson’s localization of quantum waves in random media. 

It was argued in [13] that the transition from order to chaos in classical and quantum systems of 

gauge and Higgs fields is prone to occur somewhere in the low to mid TeV scale. The inability 

of the Higgs vacuum to survive not too far above the LHC scale explains away the fine-tuning 

problem and signals the breakdown of the SM in this region. The likely instability of the vacuum 

in the low to intermediate TeV scale brings up an intriguing speculation on the nature of the 

Higgs scalar. As suggested in [14], scalars are the most likely to form a Higgs-like condensate of 

gauge bosons on MFM, that is,  

 0 01 [( ) ( )]
4C W W Z g W W Z g                (22) 
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As further explained in [14], a remarkable feature of (22) is that it is a weakly coupled cluster of 

gauge fields having zero topological charge. Compliance with this requirement motivates the 

duplicate construction of (22), which contains individual WW, ZZ, photon and gluon doublets. 

Stated differently, (22) is the only inclusive combination of gauge field doublets that is free from 

all gauge and topological charges. Table 1 shows a comparative display of properties carried by 

the SM Higgs and the Higgs-like condensate.  

Scalar 

field 

Original 

form 
Composition  

Mass  

(GeV) 

Weak 

hypercharge 

Electric 

charge 
Color 

Topological 

charge 

SM Higgs 
0





 
 
 

 none ~ 126 
1

1

 
 
 

 
1

0

 
 
 

 0 0 

Higgs-like 

condensate C  (22) ~ 126 0 0 0 0 

 

Tab. 1: SM Higgs doublet versus the Higgs-like condensate.  

References 

1) E. Goldfain, “Open Challenges of the Higgs Sector“, Prespacetime Journal, 4(9), 2013, pp. 

845-846. 

2) J. W. Moffat, “Ultraviolet Complete Electroweak Model without a Higgs Particle”, Eur. Phys. 

J. Plus 126 (5), 2011, pp. 1-17 and http://arxiv.org/pdf/1006.1859v5.pdf 

3) H. Ballhausen, J. Berges, C. Wetterich, “Critical Phenomena in Continuous Dimension” 

http://arxiv.org/pdf/hep-th/0310213v2.pdf  

4) E. Goldfain, “Critical behavior in continuous dimension, E-infinity theory and particle 

physics”, Chaos, Solitons and Fractals 38(4), 2008, pp. 928-935. 

http://arxiv.org/pdf/1006.1859v5.pdf
http://arxiv.org/pdf/hep-th/0310213v2.pdf%204
http://arxiv.org/pdf/hep-th/0310213v2.pdf%204


11 

 

5) E. Goldfain, “Fractional Field Theory and Physics Beyond the Standard Model“, 

Prespacetime Journal, 3(5), 2012, pp. 435-438. 

6) E. Goldfain, “Fractal Spacetime and the Dynamic Generation of Mass Scales in Field 

Theory”, Prespacetime Journal 5(9), 2014, pp. 843-851.  

7) E. Goldfain, “Fractional Field Theory and High-Energy Physics: New Developments”  

in Horizons in World Physics, 279, Nova Science Publishers, 69-92 (2013). 

8) G. Calcagni and G. Nardelli, “Quantum Field Theory with Varying Couplings”, 

http://arxiv.org/pdf/1306.0629.pdf 

9) G. Calcagni et al., “Varying electric charge in multiscale spacetime”, Phys. Rev. D 89, 

024021, 2014 and http://arxiv.org/pdf/1305.3497.pdf 

10) E. Goldfain, “Quantum Field Theory as Manifestation of Fractal Geometry”, Prespacetime 

Journal, 4(9), 2013, pp. 847-850.  

11) J. Heeck, “How stable is the photon?”, Phys. Rev. Lett. 111, (2013), 021801 and 

http://arxiv.org/abs/1304.2821 

12) A. S. Goldhaber, M. M. Nieto, “Photon and Graviton Mass Limits”, 

http://arxiv.org/pdf/0809.1003v5.pdf 

13) E. Goldfain, “Dynamic Instability of the Standard Model and the Fine-Tuning Problem”, 

Prespacetime Journal, 12(12), pp. 1175-1181. 

14)  E. Goldfain, “Fractal Spacetime as Underlying Structure of the Standard Model”, Quantum 

Matter, 3(3), (2014), pp. 256-263. 

http://arxiv.org/pdf/1306.0629.pdf
http://arxiv.org/pdf/1305.3497.pdf
http://arxiv.org/abs/1304.2821
http://arxiv.org/pdf/0809.1003v5.pdf


12 

 

 


